Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
Inside Out - Visualizing Chemical Transformations and Light-Matter Interactions with Nanometer-Scale Resolution: 2017 MRS Outstanding Young Investigator Award Talk 
Date/Time:
April 19, 2017   11:45am - 12:30pm
 
Share:
 

In Pixar’s Inside Out, Joy proclaims, “Do you ever look at someone and wonder, what’s going on inside?” My group asks the same question about nanomaterials whose function plays a critical role in energy and biologically-relevant processes. This presentation will describe new techniques that enable in situ visualization of chemical transformations and light-matter interactions with nanometer-scale resolution. We focus in particular on i) ion-induced phase transitions; ii) optical forces on enantiomers; and iii) nanomechanical forces using unique electron, atomic, and optical microscopies. First, we explore nanomaterial phase transitions induced by solute intercalation, to understand and improve materials for energy storage applications.  As a model system, we investigate hydrogen intercalation in palladium nanocrystals. Using environmental electron microscopy and spectroscopy, we monitor this reaction with sub-2-nm spatial resolution and millisecond time resolution. Particles of different sizes, shapes, and crystallinities exhibit distinct thermodynamic and kinetic properties, highlighting several important design principles for next-generation energy storage devices. Then, we investigate optical tweezers that enable selective optical trapping of nanoscale enantiomers, with the ultimate goal of improving pharmaceutical and agrochemical efficacy. These tweezers are based on plasmonic apertures that, when illuminated with circularly polarized light, result in distinct forces on enantiomers. In particular, one enantiomer is repelled from the tweezer while the other is attracted. Using atomic force microcopy, we map such chiral optical forces with pico-Newton force sensitivity and 2 nm lateral spatial resolution, showing distinct force distributions in all three dimensions for each enantiomer. Finally, we present new nanomaterials for efficient and force-sensitive upconversion. These optical force probes exhibit reversible changes in their emitted color with applied nano- to micro-Newton forces. We show how these nanoparticles provide a platform for understanding intra-cellular mechanical signaling in vivo, using C. elegans as a model organism. 
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Mapping High Explosives in the Vapor-phase with Fluorescence Active Metal-Organic Frameworks (FAMs)
21st Century Tools for Accelerating Scientific Research - From Combinatorial Synthesis and Text Mining to Artificial Intelligence - Part 1
21st Century Tools for Accelerating Scientific Research - From Combinatorial Synthesis and Text Mining to Artificial Intelligence - Part 2
21st Century Tools for Accelerating Scientific Research - From Combinatorial Synthesis and Text Mining to Artificial Intelligence - Part 3
Introduction to Advanced Imaging and Tomography Techniques for Transmission Electron Microscopy: High-Speed Direct Electron Detectors for In Situ TEM - Part 1