Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
EE15.7.01 - Breakthrough Water Purification Technologies Based on Nanofibrous Membranes 
Date/Time:
March 31, 2016   8:30am - 9:00am
 
Taxonomy
 
 
 
 
Water 
 
Share:
 

We have recently demonstrated a revolutionary membrane design based on hierarchical assembly of fibrous materials with different fiber diameters (nm to μm). This design has led to breakthrough filtration performance from microfiltration to reverse osmosis, i.e., high flux, low energy and small system footprint. The key components of this technology are electrospun nanofibers (dia. ~100 nm) and carboxylate cellulose nanofibrils (dia. ~5 nm) extracted from biomass using a combined TEMPO-oxidation/defibrillation method. These nanofibers have large surface-to-volume ratio and high capacity for surface modification/charge, making them ideal materials for fabrication of highly permeable separation media, e.g., microfiltration filter that can simultaneously remove bacteria, viruses and toxic metal ions at gravity pressure. We further discovered that a simple two-chemical process can produce carboxylate nanocelluloses of different dimensions fusing biomass from different source. This ‘green’ method can bypass both electrospinning and conventional nanocellulose fabrication steps (extraction/pretreatment, bleaching and TEMPO oxidation) and generate inexpensive new nanostructured materials for water purification in a very sustainable manner.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
The Materials Project: Using Informatics to Enable Materials by Design
Incorporating Sustainability Principles into Your Research
Panel Discussion: Industry Perspectives on Sustainability Across the Supply Chain: Challenges and Opportunities
Materials and Sustainable Development
Redox Active Metal Oxide-Based Solar Thermochemical Fuels: Issues of Materials Challenges, Efficiency, Scale, and Economics