Keyword Suggestions

P2.01 - Personalized Intelligent Keyboard for Self-Powered Human-Machine Interfacing 
April 7, 2015   1:30pm - 1:45pm

Computer keyboard is one of the most common, reliable, accessible and effective approaches used for human-machine interfacing and information exchange. Accessing the information provided by computer from internet dictates the quality, efficiency and happiness of our work and life. A keyboard, an indispensable component of the system, is the only means for information input and control for many purposes such as information recording/outputting, financial management, bill payment, personal communications and many more. With this regard, the heavy reliance on computer incurs a major concern for its security issue.Although keyboard has been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboard remains a great challenge. Here we report the first intelligent, self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied onto the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also be capable of tracing and recording typing contents by detecting both the dynamic time intervals between and during inputting letters and the force used for each typing action. Such features promise its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals if assisted by behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speed larger than 100 characters per min, with an area power density of 69.6 mWcm-2. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control. The justified concepts and demonstrations in this work can be immediately and extensively adopted in a variety of applications, and come into effect of improving the way of our living. References: (* indicate co-first author). 1.J. Chen*, G. Zhu*, J. Yang*, Q. Jing, P. Bai, W. Yang, X. Qi, Y.Su and Z.L. Wang.Science, under review. 2.J. Chen*, G. Zhu*, W. Yang, Q. Jing, P. Bai, Y. Yang, T. C. Hou and Z. L. Wang. Adv. Mater. 25 (2013), 6094�6099 3.W. Yang*, J. Chen*, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing and Z. L. Wang.ACS Nano 7 (2013),11317-11324 4.G. Zhu*, J. Chen*, Y Liu, P Bai, Y Zhou, Q Jing, C Pan, ZL Wang. Nano letters 13 (2013), 2282-2289 5.G. Zhu*, J. Chen*, T. Zhang, Q. Jing and Z. L. Wang. Nat. Commun. 5 (2014), 3426 6.J. Yang*, J. Chen*, Y. Yang, H. Zhang, W. Yang, P. Bai, Y. Su and Z. L. Wang. Adv. Energy Mater. 4 (2014), 1301322

Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this

Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications