Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
O11.07 - Synthesis of LiCoO2 and LiNi1/3Mn1/3Co1/3O2 2D Nanosheets by Osmotic Swelling and Reassembly into Hybrid Materials for High Performance Lithium-ion Batteries and Supercapacitors 
Date/Time:
April 10, 2015   3:30pm - 3:45pm
 
Speaker:
 
Taxonomy
 
Share:
 

2D materials have attracted a great deal of attention for their unique electrical and magnetic properties, but may also play important roles in energy storage applications. Lithium-ion batteries and supercapacitors are widely used to power mobile devices, but the energy and power densities of the electrode materials still need improvement. Many conventional battery materials have layered structures, and hence can be readily exfoliated into 2D nanosheet materials. The high surface area and short ionic diffusion distances in the 2D nanosheets may improve the charging/discharging rates and result in more lithium insertion or surface adsorption. Furthermore, hybrid electrode materials comprised of layers of different cathode materials may be possible by reassembling different nanosheets. These sandwich structures could potentially result in unique synergistic effects and novel redox behavior due to the interactions from different sheets. Finally, we can obtain better understanding of the structure of complex layered cathode materials through exfoliation and high resolution ex-situ microscopy studies. Here we present our synthesis of 2D nanosheets of two common lithium-ion battery materials, LiCoO2 (LCO) and LiNi1/3Mn1/3Co1/3O2 (NMC). Nanosheets were obtained by exfoliation of LCO and NMC particles using traditional osmotic swelling with tetraethylammonium (TEA). TEM, SEM and AFM analysis showed that the particles were successfully exfoliated nanosheets with around 2 nm thickness. XRD and electron diffraction pattern analysis showed that these materials had hexagonal structures with good crystallization. A reassembly process was developed and applied to obtain LCO, NMC, and LCO/NMC hybrid particles. Electrochemical evaluation of the particles as electrodes for lithium-ion batteries and supercapacitors were performed. Our work is a firm step forward on improving understanding of osmotic swelling processes for the synthesis of nanosheets from complex metal oxides as well as the design and fabrication of high performance hybrid electrodes for energy storage applications.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications