Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
GG2.05 - Monitoring the Size and the Stability of Zinc Oxide Quantum Dots in Biological Media: A Soft Ionization Mass Spectrometry Technique (MALDI-TOF-MS) 
Date/Time:
April 7, 2015   2:30pm - 2:45pm
 
Speaker:
 
Taxonomy
 
 
 
 
II-VI 
 
Share:
 

With the development of material sciences, the characterization of nanomaterials has become a critical issue in managing their fascinating size-dependent physical and chemical properties. Controlling these properties from the synthesis to the application phase, and consequently to their fate as a worldwide environmental and societal concern is becoming more and more imperative. The potential toxicity of nanoparticles needs to be evaluated when developing applications in a responsible way. Zinc oxide ZnO nanoparticles can be found largely as powders and dispersions with antibacterial, anti-corrosive, antifungal and UV filtering properties. ZnO nanoparticles can also be used for various applications ranging from food and cosmetics up to coatings agent and in the manufacturing of concrete. Research is actively being conducted towards in solar cells, photocatalysis, optical devices and sensors which have already started to show economic potential worldwide. The principal techniques currently used to achieve the characterization of nanoparticles are physical and physico-chemical methods, such as Transmission Electron Microscopy (TEM), X-ray diffraction, and optical spectroscopies. All these analytical tools are excellent for global analyses of clusters and nanomaterials. Soft ionization mass spectrometry (MS) methods such as Matrix Assisted Laser Desorption Ionization coupled with Time of Flight MS (MALDI-TOFMS) have already proven their potential as tools in the nanometrology of small-sized II-VI quantum dots (QDs) such as CdS, CdSe, ZnS and ZnSe. Mass spectra of these nanocrystals are consistent with TEM and optical spectroscopy measurements [1-2]. In this paper, we present a joint physical/physico-chemical study and, more specifically, the first application of MALDI-TOF-MS to analyze small-sized ZnO QDs (3-3.5 nm diameter range) synthesized by sol-gel chemistry and stabilized through an aminosilane coating. The organic shell increases the QDs stability and dispersibility in aqueous solution. The ligands were first quantified by thermogravimetric analysis (TGA), then a careful investigation of the stability of ZnO QDs was initiated once these QDs were dispersed in different media (water, biological buffer,�) for a period up to 6 weeks. Positive ion mode mass spectra showed a decrease in mass and consequently in diameter during aging, which can be ascribed to the degradation of ZnO QDs. In conclusion, the unique combination of MALDI-TOF-MS and physico-chemical techniques brings new insights concerning the structure analysis, the stability and consequently the potential toxicity of ZnO QDs. This new strategy in nanometrology will be extended to other II-VI materials in the near future. [1] A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J.J. Gaumet, G. Medjahdi, J. Ghanbaja, R. Schneider ACS Appl. Mater. Interfaces, 4 (5) 2561-2569 (2012). [2] M. Fregnaux, J.J. Gaumet, S. Dalmasso, J.P. Laurenti, R. Schneider Microelectron. Eng. 108, 187-191 (2013).
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications