Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
CC3.02 - Reliability Study of Organic Light-Emitting Diodes by Continuous-Wave and Pulsed Current Stressing 
Date/Time:
April 7, 2015   1:45pm - 2:00pm
 
Speaker:
 
Taxonomy
 
 
 
 
 
Share:
 

The generally short lifetimes of organic light-emitting diodes (OLEDs) presents a challenge to their widespread acceptance for use in large-area displays and solid-state lighting. A greater understanding of the degradation mechanisms would help to further improve the reliability of OLEDs particularly at high brightness levels by optimizing the material selection and structural design, and pave the way for their broader applications as lighting sources. In this work, we studied the stability of green phosphorescent OLEDs with different structures under constant-current (20-50 mA/cm2) stressing. Through the modifications of the ITO anode by different plasma treatments and the hole transport layer (HTL) by incorporating inorganic component or dopants, we proved that energy level misalignment at the ITO/HTL interface leads to localized joule heating, accelerating defect generation and luminescence decay. Pulsed current stressing was then employed to suppress the joule-heating effect so as to differentiate the thermal and nonthermal factors governing the device degradation. The luminance evolution comprised an initial rapid decay regime and a subsequent slow decay regime, and only the latter was governed predominantly by electrical excitation. In OLEDs with an appropriate energy level alignment at the ITO/HTL interface, pulsed stressing with 10% duty cycle only improved the effective half life by ~15% as compared to continuous-wave stressing, indicating a minor role played by joule heating.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications