Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
CC3.01 - Metal Electromigration through Transparent Conductors - Monitoring an OLED Failure Mechanism 
Date/Time:
April 7, 2015   1:30pm - 1:45pm
 
Speaker:
 
Taxonomy
 
Share:
 

Operational lifetime is a crucial performance feature for many electronic devices such as organic light emitting diodes (OLEDs). One of the many failure mechanisms which limit OLED lifetime is the electromigration of metallic components of the electrode materials, forming short circuits through the device architecture. Metals such as silver, copper or aluminium are e. g. used in the highly conductive shunting lines which are necessary to reduce resistive losses in the transparent electrodes of large area OLED panels. A direct study of the effects of metal electromigration in devices, however, is complicated by the interference with other failure mechanisms, as well as by the very localised formation of short circuits, which renders the application of imaging techniques highly challenging. In this contribution, we present a study of silver and copper electromigration through PEDOT:PSS films, a conductive polymer which is frequently used as replacement for indium tin oxide as transparent electrode material in OLEDs. Due to the experimental setup, electromigration can be studied isolated from other phenomena, and in addition, the formation of short circuits by metal dendrite growth can be easily monitored using electrical current monitoring and optical microscopy. We have studied both experimentally and theoretically the influence of various parameters such as the electric field strength, electrode material and intrinsic electrical conductivity of the PEDOT:PSS on the speed of short circuit formation and on the appearance of the formed metal dendrites. Silver was found to migrate at a much higher rate than copper, and a high current density through the PEDOT:PSS was found to increase the migration rate, which is consistent with the assumption of metal migration being induced by the force exerted on the metal atoms by the moving charge carriers. The results from our study have been correlated with lifetime studies in functional OLED devices. Currently, our experimental setup is used to develop strategies to suppress or slow down metal electromigration and thus improve OLED lifetime.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications