Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
CC1.02 - InGaN-Based Laser Diodes: Physical Origin of Gradual and Catastrophic Degradation 
Date/Time:
April 7, 2015   8:30am - 9:00am
 
Speaker:
 
Taxonomy
 
 
 
 
laser 
 
Share:
 

Over the last few years, the research in the field of InGaN-based laser diodes has shown impressive advancements: these devices can currently cover the wavelength range between 375 nm and 530 nm, and are expected to find wide application in the next generation projectors, optical data storage systems, and biomedical devices. Moreover, it has been recently demonstrated that blue InGaN lasers can be used for the fabrication of high-intensity white lamps, for application in the automotive field. Most of these applications require high optical power levels (>0.25-1 W for the single laser diode): as a result, the devices are driven under extreme conditions; typical current densities can be in excess of 10 kA/cm2, corresponding to high levels of power dissipation (~50 kW/cm2) and self heating (Tj>100-150 �C). These factors may lead to the early degradation of the laser diodes, since temperature and current act as driving forces for the gradual degradation. This presentation describes the physical mechanisms responsible for the degradation of InGaN-based laser diodes submitted to high current/temperature stress; more specifically, we will discuss the following relevant topics: (i) the degradation of the efficiency of the quantum well region due to the generation of non-radiative centers, and the properties of the related defects; (ii) the changes of the electrical characteristics of the devices induced by the exposure to high temperatures; (iii) the sudden degradation of the laser diodes, due to catastrophic-optical damage and to electrostatic discharges. In addition, we will discuss the role of the various driving forces (temperature, current, optical power) in accelerating the degradation kinetics, and the relation between time-to-failure and material quality. The results described within the presentation will be critically compared to recent papers, to give an exhaustive description of the topic.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Group III-Sb Metamorphic Buffer on Si for p-Channel all-III-V CMOS: Electrical Properties, Growth and Surface Defects
Kinetics and Structure of Nickelide Contact Formation to InGaAs Fin Channels
Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors
The Effect of ALD Temperature on Border Traps in Al2O3 InGaAs Gate Stacks
Atomic Layer Deposition of Crystalline SrHfxTi1-xO3 Directly on Ge (001) for High-K Dielectric Applications