Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
W8.02 - High Efficiency Planar Heterojunction Organic-Inorganic Perovskite Solar Cells Using Self-Organized Hole Extraction Layer with High Work Function 
Date/Time:
December 4, 2014   9:00am - 9:15am
 
Speaker:
 
Taxonomy
 
 
 
 
 
Share:
 

Methylammonium lead halide perovskites have been intensively studied as promising photo absorption and carrier transporter materials in solar cells due to excellent semiconducting properties, a broad range of light absorption, and a high extinction coefficient. Although PCE of perovskite solar cells has been increased remarkably, a few reports have considered solution-processed planar heterojunction (SP-PHJ) structure solar cells without using a mesoporous or compact semiconducting metal oxide (e.g, TiO2) layer processed by high-temperature sintering, and the SP-PJH solar cells to date have shown lower PCE than those with a mesoporous or compact TiO2 layer. Commercialization of perovskite solar cells requires easy, scalable and low-temperature methods to fabricate them efficiently by a solution process without sintering. PEDOT:PSS can be considered as a good HEL because of simple solution processibility, planarization effect on the underlying ITO layer, and a low-temperature annealing process. . However the work function WF of PEDOT:PSS (4.9 to 5.2 eV depending on the ratio of PEDOT to PSS) is lower than the ionization potential IPof perovskite (e.g. 5.4 eV for methylammonium lead iodide (CH3NH3PbI3)), so the potential energy loss at PEDOT:PSS/Perovskite interface decreased built-in potential in perovskite solar cells.

The WF in HELs can be tuned by using molecular surface engineering to control the surface composition in HEL films, which depends on the surface-enriched molecules and their concentration relative to the conducting polymer. Thus we used a self-organized HEL (SOHEL) which is composed of a conducting polymer composition (e.g., PEDOT:PSS) and a perfluorinated ionomer (PFI), i.e., tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octene-sulfonic acid copolymer. Here, we present solution-processed methylammonium lead iodide CH3NH3PbI3-based perovskite solar cells with a high-WF SOHEL for good energy level alignment with the IP level of CH3NH3PbI3. The SOHEL at the hole extraction interface can increase the built-in potential, the photocurrent, and thus the PCE of perovskite solar cells. We obtained high PCE of 11.7% in SP-PHJ perovskite solar cells under 100-mW/cm2 illumination. We also demonstrated flexible perovskite solar cells on a poly(ethylene terephthalate) (PET) substrate; they had PCE as high as 8.0%.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Processing Conditions, Alternative Top Contacts and Device Operation of Pervoskite-Based Solar Cells
Performance Enhancement of Pentacene Based Organic Field-Effect Transistor through DNA Interlayer
Semiconducting Polymer-Dipeptide Nanostructures by Ultrasonically-Assisted Self-Assembling
DNA as a Molecular Wire: Distance and Sequence Dependence
Structure-Property Relationship in Biologically-Derived Eumelanin Cathodes Electrochemical Energy Storage