Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
NN2.02 - Physics of Local Crystallography: Phases, Symmetries, and Defects from the Bottom Up 
Date/Time:
December 1, 2014   1:45pm - 2:00pm
 
Format:
       
  Synced Audio / Video / Slides
 
Share:
 

Progress in high-resolution electron and probe based, real space imaging techniques like (Scanning) Transmission Electron Microscopy (STEM) and Scanning Probe Microscopy (SPM) has consistently delivered imaging of atomic columns and surface atomic structures with ever growing precision. As the instruments evolve, the basic data processing principle - analysis of structure factor, or essentially a two point correlation function averaged over probing volume � remains invariant since the days of Bragg. We propose a multivariate statistics based approach to analyze the coordination spheres of individual atoms to reveal preferential structures and symmetries. The underlying mechanism is that for each atom, i, on the lattice site with indices (l, m), we construct a near coordination sphere vector , where is the radius-vector to j/2-th nearest neighbor. Once the set of Ni vectors is assembled, it is analyzed though cluster analysis and other multivariate methods to reveal and extract regions of symmetry, distortions, different phases, boundaries, defects, etc., that can be back projected on the atomically mapped surface. Results are presented on various model and real material systems including La0.7Sr0.3MnO3, BiFeO3, LaCoO3 and discussed in light of physical parameter extraction.

Acknowledgement:
Research for (AB, QH, AB, SJ, SVK) was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Research was conducted at the Institute for Functional Imaging of Materials and Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Growth and Characterization of High Quality, Large Single Crystal Diamond Substrates
Modeling of Nonbonded Interactions in Graphene and Carbon Nanostructures
The Nature of Defects for Landau de-Gennes and Maier-Saupe Q-Tensor Energies for Liquid Crystals
Numerics for Liquid Crystals with Variable Degree of Orientation
Tutorial K: Synthesis, Properties and Applications of Graphene