Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
MM13.08 - Cross-Linked Carbon Nanotube Heat Spreader 
Date/Time:
December 4, 2014   11:15am - 11:30am
 
Speaker:
 
Taxonomy
 
Share:
 

Isolated individual carbon nanotubes (CNTs) have shown exceptional thermal conductivity along their axis, but have poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output areas are the same, providing no heat spreading effect. We demonstrate the use of energetic argon ion beams to join overlapping CNTs in a thin film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m-K. Such thin films may be used as heat spreaders to enlarge the thermal footprint of laser diodes and CPU chips, for example, for enhanced cooling. At higher ion energies and fluence, the CNTs appear to collapse and reform, aligned parallel to the ion beam axis, and form dense high aspect ratio tapered structures. The high surface area of these structures lends themselves to applications in energy storage, for example. We consider the mechanisms of energetic ion interaction with CNTs and junction formation of two overlapping CNTs during the subsequent self-healing process, as well as the formation of high aspect ratio structures under more extreme conditions.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Performance Enhancement of Pentacene Based Organic Field-Effect Transistor through DNA Interlayer
Semiconducting Polymer-Dipeptide Nanostructures by Ultrasonically-Assisted Self-Assembling
DNA as a Molecular Wire: Distance and Sequence Dependence
Structure-Property Relationship in Biologically-Derived Eumelanin Cathodes Electrochemical Energy Storage
Artificial Physical and Chemical Awareness (proprioception) from Polymeric Motors