Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
K1.03 - Graphene Quantum Devices 
Date/Time:
December 1, 2014   9:00am - 9:30am
 
Speaker:
 
Taxonomy
 
Share:
 

Graphene quantum dots show Coulomb blockade, excited states and their orbital and spin properties have been investigated in high magnetic fields. Most quantum dots fabricated to date are fabricated with electron beam lithography and dry etching which generally leads to uncontrolled and probably rough edges. We demonstrate that devices with reduced bulk disorder fabricated on BN substrates display similar localized states as those fabricated on the more standard SiO2 substrates. For a highly symmetric quantum dot with short tunnel barriers the experimentally detected transport features can be explained by 3 localized states, 1 in the dot and 2 in the constrictions. A way to overcome edge roughness and the localized states related to this are bilayer devices where a band gap can be induced by suitable top and back gate voltages. By placing bilayer graphene between two BN layers high electronic quality can be achieved as documented by the observation of broken symmetry states in the quantum Hall regime. In addition we observe a Lifshitz transition indicating a tunable topology of the Fermi circle. This can be exploited to achieve smoother and better tunable graphene quantum devices. Work done in collaboration with D. Bischoff, P. Simonet, A. Varlet, Y. Tian, and T. Ihn.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Performance Enhancement of Pentacene Based Organic Field-Effect Transistor through DNA Interlayer
Semiconducting Polymer-Dipeptide Nanostructures by Ultrasonically-Assisted Self-Assembling
DNA as a Molecular Wire: Distance and Sequence Dependence
Structure-Property Relationship in Biologically-Derived Eumelanin Cathodes Electrochemical Energy Storage
Artificial Physical and Chemical Awareness (proprioception) from Polymeric Motors