Keyword Suggestions

FF5.10 - A Novel Method for Vacuum Adsorption Studies on Zeolites 
December 2, 2014   11:45am - 12:00pm

Water-responsive materials swell and shrink in response to changes in relative humidity (RH) and can be potentially used to harvest energy from evaporating water [1]. Here, we investigated the potential of harvesting energy from naturally evaporating water due to typical weather conditions across the United States. We modeled the power output, the effect on evaporation rate, and the intermittency of the power output. We first performed steady state calculations over a range of 218 locations across the United States and determined the average energy flux and net water savings due to a reduction in evaporation rates. We then used a non-steady state mass and energy balance approach on three test locations of South-East NY, Western TX, and South-East CA to determine daily and yearly variations in power output. Our calculations show that this system can deliver power densities surpassing wind power and comparable to current installed solar systems. These results suggest that further research into water-responsive materials and devices can provide major benefits in developing a novel renewable energy platform.


1. X. Chen, L. Mahadevan, A. Driks, and O. Sahin. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nature Nanotechnology, 2014. 9(2): p. 137-141.

Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this

Performance Enhancement of Pentacene Based Organic Field-Effect Transistor through DNA Interlayer
Semiconducting Polymer-Dipeptide Nanostructures by Ultrasonically-Assisted Self-Assembling
DNA as a Molecular Wire: Distance and Sequence Dependence
Structure-Property Relationship in Biologically-Derived Eumelanin Cathodes Electrochemical Energy Storage
Artificial Physical and Chemical Awareness (proprioception) from Polymeric Motors