Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
Z11.09 - Organic Bioelectronics for Regenerative Medicine 
Date/Time:
April 25, 2014   10:30am - 11:00am
 
Speaker:
 
Share:
 

Electronic transducers of neuronal cellular activity are important devices in neuroscience and neurology. Organic field-effect transistors (OFETs) offer tailored surface chemistry, mechanical flexibility, and high sensitivity to electrostatic potential changes at device interfaces. These properties make them attractive for interfacing electronics to neural cells and performing extracellular recordings and stimulation of neuronal network activity.Here I want to present an emerging area of interest where the OFET is used as a gauge to supply a variety of electrical, chemical and electrochemical stimuli to neuronal cells, in an effort to stimulate their plasticity else to differentiate neuronal stem cells into neurons. I will overview the progresses of an ongoing EU project, “Implantable Organic Nanoelectronics” (I-ONE-FP7) which is aimed to the use of organic electronics in implantable devices for the treatment of the spinal cord injury (SCI). The project is presently at midterm, and I will highlight the advances to date and discuss the direction of further development towards in-vivo experiments on animal model of the SCI.This work involves collaboration of several partners, that I would like to acknowledge through the principal investigators: S. Pluchino (Univ. of Cambridge), M. Berggren and D. Simon (Univ. Linkoeping), F. Zerbetto and S. Rapino (Univ. of Bologna), P. Greco (Scriba Nanotecnologie Srl Bologna), L. Occhipinti (ST Microelectronics Catania), D. Vuillaume (CNRS, Lille), R. Garcia (CSIC Madrid), H. Gomes (Univ. do Algarve), R. Frycek (Amires Sarl, Neuchatel), E. Cerna and V. Velebny (Contipro Dolni Dobrouc), T. Cramer, S. Casalini, F. Valle (CNR-ISMN Bologna), G. Foschi, C. A. Bortolotti, N. Dorigo (UNIMORE). This work is supported by EU NMP Project I-ONE Grant Agreement n. 280772.
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Keynote Address
Panel Discussion - Different Approaches to Commercializing Materials Research
Business Challenges to Starting a Materials-Based Company
Fred Kavli Distinguished Lectureship in Nanoscience
Application of In-situ X-ray Absorption, Emission and Powder Diffraction Studies in Nanomaterials Research - From the Design of an In-situ Experiment to Data Analysis