Keyword Suggestions

XX10.02 - Designing Self-Regenerating Polymer Gels 
April 24, 2014   10:30am - 11:00am

An elusive goal in materials science is designing systems that mimic the remarkable ability of amphibians to re-grow limbs. While self-healing materials can mend local defects, there are virtually no examples of materials that can regenerate themselves. The advent of such regenerative materials could dramatically extend the useful lifetime of manufactured products. Through new computational models, we design a nanorod-filled gel that effectively regenerates the gel matrix when a layer of the material is sliced-off. With this layer removed, the nanorods diffuse to the newly formed interface and extend into the outer solution, which contains monomers and a small fraction of cross-linkers. Polymerization initiated from the rods’ surfaces leads to chains that become cross-linked to form a new gel that resembles the severed layer. After the initial cut, the regeneration requires no external intervention; synergistic interactions among all components in this system enable the vital processes leading to re-growth, which could be repeated with subsequent cuts.

Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this

Keynote Address
Panel Discussion - Different Approaches to Commercializing Materials Research
Business Challenges to Starting a Materials-Based Company
Fred Kavli Distinguished Lectureship in Nanoscience
Application of In-situ X-ray Absorption, Emission and Powder Diffraction Studies in Nanomaterials Research - From the Design of an In-situ Experiment to Data Analysis