Keyword Suggestions

Results
 
 
Account Login
 
 
 
 
 

Library Navigation

 
 

Browse Meetings

 
 
 
UU9.02 - Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging 
Date/Time:
April 24, 2014   2:15pm - 2:30pm
 
Speaker:
 
Taxonomy
 
 
sensor 
 
 
 
Share:
 

Designing, fabricating, and integrating arrays of nanodevices into a functional system are the key to transferring nanoscale science into applicable nanotechnology. We report large-array three-dimensional (3D) circuitry integration of piezotronic transistors based on vertical zinc oxide nanowires as an active taxel-addressable pressure/force sensor matrix for tactile imaging. Using the piezoelectric polarization charges created at a metal-semiconductor interface under strain to gate/modulate the transport process of local charge carriers, we designed independently addressable two-terminal transistor arrays, which convert mechanical stimuli applied to the devices into local electronic controlling signals. The device matrix can achieve shape-adaptive high-resolution tactile imaging and self-powered, multidimensional active sensing. The 3D piezotronic transistor array may have applications in human-electronics interfacing, smart skin, and micro- and nanoelectromechanical systems.(Published on Science, Vol. 340 no. 6135 pp. 952-957)
 


 
 
Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this
 



Submit
 
Keynote Address
Panel Discussion - Different Approaches to Commercializing Materials Research
Business Challenges to Starting a Materials-Based Company
Fred Kavli Distinguished Lectureship in Nanoscience
Application of In-situ X-ray Absorption, Emission and Powder Diffraction Studies in Nanomaterials Research - From the Design of an In-situ Experiment to Data Analysis