Keyword Suggestions

OO2.02 - Understanding the Electrical Properties of Graphene Using the Quantum Capacitance Effect 
April 21, 2014   2:00pm - 2:30pm

The quantum capacitance effect in graphene can readily be observed experimentally due to the low density of states near the Dirac energy. In particular, in metal-oxide-graphene structures with thin, high-K dielectrics, the quantum capacitance strongly affects the measurable capacitance as a function of gate voltage. In this work, we show how the quantum capacitance can be utilized to understand numerous properties of graphene, the surrounding dielectrics and even absorbed molecules on the graphene surface. Furthermore, we show that the quantum capacitance can be utilized to realize numerous novel graphene-based devices, including wireless sensors and optical modulators. Finally, the prospects for future materials-related investigations and device applications of quantum capacitance in graphene are described.

Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this

Keynote Address
Panel Discussion - Different Approaches to Commercializing Materials Research
Business Challenges to Starting a Materials-Based Company
Fred Kavli Distinguished Lectureship in Nanoscience
Application of In-situ X-ray Absorption, Emission and Powder Diffraction Studies in Nanomaterials Research - From the Design of an In-situ Experiment to Data Analysis