Keyword Suggestions

Account Login

Library Navigation


Browse Meetings

F7.04 - Three-Dimensional Atomic Layer Epitaxy: GaP Nucleation in MOCVD Growth on Si Microwires for Photovoltaic Applications 
April 24, 2014   11:15am - 11:30am

Vapor-liquid-solid grown Cu-catalyzed Si microwire arrays have shown great promise in photovoltaic and photoelectrochemical applications. Integration of GaP and other III-V materials on Si wires is a route to increased performance through the enabling of larger open circuit voltages and tandem or multijunction designs. State of the art work in the field, leveraging careful understanding of Si(001) surface preparation and an atomic layer deposition-like nucleation layer growth, has demonstrated the possibility of metallorganic chemical vapor deposition (MOCVD) of GaP on Si(001) substrates with nearly pristine interfaces free of stacking faults, microtwins and anti-phase domains. In this work, we transfer the atomic layer epitaxy (ALE) nucleation layer optimization to the 3-dimensional Si wire surfaces.Before growth, planar Si(001), Si(011), Si(112) and Si microwire arrays are chemically cleaned using standard techniques to remove organic and metallic surface contaminants. After a high temperature anneal, ALE nucleation is performed 450°C with alternating pulses of triethylgallium (TEGa) and tertiarybutylphosphine (TBP). After heating the sample to 600°C under TBP overpressure, thicker GaP layers are grown with conventional simultaneous supply of both precursors. Undoped 50 nm thick films grown on planar Si are almost perfectly pseudomorphic (3.7% relaxation) as characterized by high resolution x-ray diffraction. Transmission electron microscopy of cross sections reveal that defects are still present in the GaP layers grown on Si microwires, including twins and antiphase domains. Thin, n-type GaP:Si layers have been grown on p-type Si microwires as a demonstration of a single wire heterojunction solar cell. Realistic materials parameters are used in conjunction with a coupled optical and electrical device simulation implemented in the Synopsys Sentaurus TCAD to assist in the design and interpretation of experimental results.

Average Rating: (No Ratings)
  Was great, surpassed expectations, and I would recommend this
  Was good, met expectations, and I would recommend this
  Was okay, met most expectations
  Was okay but did not meet expectations
  Was bad and I would not recommend this

Keynote Address
Panel Discussion - Different Approaches to Commercializing Materials Research
Business Challenges to Starting a Materials-Based Company
Fred Kavli Distinguished Lectureship in Nanoscience
Application of In-situ X-ray Absorption, Emission and Powder Diffraction Studies in Nanomaterials Research - From the Design of an In-situ Experiment to Data Analysis